2004 Vol. 6, No. 7 1139–1142

Enantiodivergent Synthesis of Both Enantiomers of Marine Alkaloids Haliclorensin and Isohaliclorensin, a Constituent of Halitulin[†]

Jian-Feng Zheng, Li-Ren Jin, and Pei-Qiang Huang*

Department of Chemistry and The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, P. R. China pqhuang@xmu.edu.cn

Received January 18, 2004

ABSTRACT

Starting from (3*R*)-5-benzotriazolyl-3-phenylperhydropyrido[2,1-*b*][1,3]oxazole 9, the enantiodivergent syntheses of both enantiomers of the marine alkaloids haliclorensin 1 and isohaliclorensin 3 have been achieved. Our syntheses feature ring-expansion reactions for the formation of the aza-macrocycle ring system of 3 and sequential ring-expansion reactions (aza-Claisen rearrangement and Zip reaction) for the formation of the aza-macrocycle ring system of 1.

Haliclorensin (1)¹ and halitulin (2)² are two unique alkaloids isolated from the marine sponge *Haliclona tulearensis*, which was collected in Sodwana Bay, Durban, South Africa. The strong cytotoxicity of haliclorensin against P-388 mouse leukemia cells and that of halitulin against several tumor cell lines have stimulated studies toward the total syntheses of both molecules. Steglich³ and Banwell's⁴ syntheses of haliclorensin allowed the revision of its structure to (−)-(S)-1,³ and the initially assigned structure (3) for haliclorensin was subsequently renamed isohaliclorensin.³ A recent report⁵ on the first total synthesis of halitulin also confirmed the

previously assigned structure (2) and allowed determination of its absolute configuration (15S).

Retrosynthetic analysis of **1** and **3** suggested **4** as a common precursor (Scheme 1). We envisioned forming the ring system of haliclorensin **1** via a ring expansion reaction⁸ on the amino-lactam derived from **4**, and this, in turn, could potentially be derived from **6**. The latter could itself be accessed from **7** by an aza-Claisen rearrangement, ^{9,10} and **7**

 $^{^\}dagger$ Dedicated to Professor Dr. Khi-Rui Tsai on the occasion of his 90th birthday.

⁽¹⁾ Koren-Goldshlager, G.; Kashman, Y.; Schleyer, M. *J. Nat. Prod.* **1998**, *61*, 282.

⁽²⁾ Kashman, Y.; Koren-Goldshlager, G.; Gravalos, M. D. G.; Schleyer, M. *Tetrahedron Lett.* **1999**, *40*, 997.

^{(3) (}a) Heinrich, M. R.; Steglich, W. *Tetrahedron Lett.* **2001**, *42*, 3287. (b) Heinrich, M. R.; Kashman, Y.; Spiteller, P.; Steglich, W. *Tetrahedron* **2001**, *57*, 9973.

⁽⁴⁾ Banwell, M. G.; Bray, A. M.; Edwards, A. J.; Wong, D. J. New J. Chem. **2001**, 25, 1347.

⁽⁵⁾ Heinrich, M. R.; Steglich, W.; Banwell, M. G.; Kashman, Y. Tetrahedron 2003, 59, 9239.

Scheme 1

(S)-1
or
(R)-3
(S)-3
(S) or (R)
(R)-3
(S) or (R)
(S) or (R)-7
(3R)-8 X=H
(3R)-9 X=Bt

5 R=H
5 R=H,
$$5.6_{\Delta}$$

could possibly be prepared from Husson's oxazolopiperidine **8**¹¹ or from Katritsky's benzotriazolyl oxazolopiperidine **9**¹² (Scheme 1).

As shown in Scheme 2, we started the synthesis of 11a

and **11b** by condensing (*R*)-phenylglycinol with glutaraldehyde and benzotriazole^{11,12} to obtain **9** as a regio- (Bt¹ and Bt²) and diastereomeric mixture in high yield (Scheme 2). To convert **9** to **8**, a chemoselective reductive debenzotriazolation was required. We attempted Husson's conditions, namely, Raney nickel in refluxing THF for 20 h.^{11a} However, this led to complex mixtures of products. Fortunately, when **9** was treated with an excess of freshly prepared Raney-Ni at room temperature for $7 \sim 8$ h, 8^{11a} was obtained as a 9:1 diastereomeric mixture in 57% yield.

With compound 8 in hand, we proceeded to study the nucleophilic alkylation of 8. Although the ring opening of

oxazolidines by Grignard reagents is a well-known procedure, 11-13 little was known about the stereochemical behavior of simple bicyclic oxazolidines such as **8**^{14,15} in this type of reaction. Treatment of **8** with 4 molar equiv of vinylmagnesium bromide led to the vinylated products **11a**/**11b** in 80:20 ratio. The two diastereomers were separable by column chromatography. To determine the stereochemistry of the major diastereomer **11a**, the acetate **12b**, prepared from **11b**, was hydrogenated to give a known piperidine **13b** (Scheme 3). 16 Comparing the spectral data and optical

Scheme 3

11b
$$\xrightarrow{Ac_2O}$$
 \xrightarrow{DMAP} \xrightarrow{N} \xrightarrow{OAc} $\xrightarrow{H_2}$ \xrightarrow{N} \xrightarrow{OAc} $\xrightarrow{H_2}$ \xrightarrow{N} \xrightarrow{OAc} $\xrightarrow{12b}$ $\xrightarrow{13b}$

rotation value of **13b** { $[\alpha]^{20}_D$ -65.1 (c 2.0, CHCl₃)} with those reported { $[\alpha]^{23}_D$ -65.2 (c 2.3, CHCl₃) for the (2R,2'R)-enantiomer} allowed us to determine its absolute configuration as 2R,2'R. Thus, the absolute configuration of **11b** was 2R,2'R, and that of **11a** was 2R,2'R.

Removal of the benzylic chiral auxiliary from **11a**, without also affecting the vinyl group, was not a trivial task. Agami's nonreductive procedure 17 was adopted for this purpose. Thus, stirring a thionyl chloride solution of alcohol **11a** at room temperature for 1.5 h, followed by treatment of the resulting chloride with KCN in DMSO—THF, furnished, in one pot, the desired 2-vinylpiperidine (R)-**14**. The crude (R)-**14**, without purification, was allowed to react with propionyl chloride (Scheme 4). In this way, (R)-N-propionyl-2-vinyl-

Scheme 4 1. SOCl₂, THF 2. KCN,THF/DMSO 3. EtCOCI, DMAP, Et₃N, CH₂Cl₂ 51% from 11a R N N N N CN 14. R=H 7. R=COEt 15

piperidine (7) $\{[\alpha]^{20}_D + 53 \ (c \ 1.1, CHCl_3)\}$ was obtained in an overall yield of 51% from **11a**. The intermediate **15** was also isolated in a yield of 10%.

We next addressed the key ring expansion reaction. When a toluene solution of **7** was heated in the presence of LHMDS

1140 Org. Lett., Vol. 6, No. 7, 2004

⁽⁶⁾ Banwell, M. G.; Bray, A. M.; Edwards, A. J.; Wong, D. J. *J. Chem. Soc., Perkin Trans.* 1 2002, 1340.

⁽⁷⁾ Usuki, Y.; Hirakawa, H.; Goto, K.; Iio, H. *Tetrahedron: Asymmetry* **2001**, *12*, 3293.

⁽⁸⁾ For a treatise on the ring-enlarging reactions, see: Hesse, M. Ring Enlargement in Organic Chemistry; VCH Publishers: New York, 1991.

^{(9) (}a) Suh, Y. G.; Lee, J. Y.; Kim, S. A.; Jung, J. K. *Synth. Commun.* **1996**, *26*, 1675. (b) For an enantioselective aza-Claisen rearrangement of an analogue of **8**, see: Suh, Y. G.; Kim, S. A.; Jung, J. K.; Shin, D. Y.; Min, K. A.; Koo, B. A.; Kim, H. S. *Angew. Chem., Int. Ed.* **1999**, *38*, 3545.

⁽¹⁰⁾ For related ring expansion reactions, see: (a) Edstrom, E. D. J. Am. Chem. Soc. 1991, 113, 6690. (b) Diederich, M.; Nubbemeyer, U. Angew. Chem., Int. Ed. 1996, 35, 1026. (c) Sudau, A.; Nubbemeyer, U. Angew. Chem., Int. Ed. 1998, 37, 1141. (d) Sudau, A.; Munch, W.; Unbbemeyer, U. J. Org. Chem. 2000, 65, 1710.

^{(11) (}a) Francolis, D.; Poupon, E.; Lallemand, M. C.; Kunesch, N.; Husson, H.-P. *J. Org. Chem.* **2000**, *65*, 3209. (b) Poupon, E.; Kunesch, N.; Husson, H.-P. *Angew. Chem., Int. Ed.* **2000**, *39*, 1493.

⁽¹²⁾ Katritzky, A. R.; Qiu, G.; Yang, B.; Steel, P. J. J. Org. Chem. 1998, 63, 6699.

⁽¹³⁾ For a review, see: Husson, H.-P.; Royer, J. Chem. Soc. Rev. 1999, 28, 383

⁽¹⁴⁾ Poerwono, H.; Higashiyama, K.; Yamauchi, T.; Kubo, H.; Ohmiya, S.; Takahashi, H. *Tetrahedron* **1998**, *54*, 13955 and refs cited therein.

⁽¹⁵⁾ For the nucleophilic alkylation of a related ring system, see: (a) Yamazaki, N.; Kibayashi, C. *Tetrahedron Lett.* **1997**, *38*, 4623. (b) Pandey, G.; Das, P. *Tetrahedron Lett.* **1997**, *38*, 9073.

for 10 min, the enolate **7a** was generated and the desired aza-Claisen rearrangement^{9a} took place, leading to the formation of (–)-azacyclodec-5-en-2-one **6** {white solid, mp 148-149 °C, $[\alpha]_D^{20}$ -48.8 (c 1.0, CHCl₃)} in a yield of 75% (Scheme 5). Since we had predicted that the aza-Claisen

rearrangement would proceed via the conformer **7a**, ^{9a} this would establish an (R)-configuration in **6**. The (R)-stereochemistry was confirmed by our synthesis of both (R)-isohaliclorensin (**3**) and (R)-haliclorensin (**1**) (vide infra). Saturation of olefinic double bond in **6** (H₂, 10%Pd/C, MeOH) furnished (+)-azacyclodecan-2-one **5** {white solid, mp 152–154 °C, [α]²⁰_D +20.3 (c 1.0, CHCl₃)} in quantitative yield.

Treatment of lactam **5** with a catalytic amount of *n*-butyllithium at -78 °C followed by addition of acrylonitrile led to the addition product **4** { $[\alpha]^{20}_D$ -59.2 (c 1.05, CHCl₃); yield 65%} along with recovered starting material **5** (33%) (Scheme 6). Finally, reduction of both the amide carbonyl

and the cyano groups of **4** with an excess of borane dimethyl sulfide complex at 60 °C for 15 h provided isohaliclorensin (**3**) in 55% yield. Comparing the specific optical rotation of our synthetic isohaliclorensin (**3**) $\{ [\alpha]^{20}_D +70 \ (c \ 0.6, MeOH) \}$ with the reported values $\{ \text{lit.}^{3a} \ [\alpha]_D -70 \ (c \ 0.9, MeOH) \text{ for } (S)-3; \text{lit.}^7 \ [\alpha]^{20}_D +74.6 \ (c \ 0.9, MeOH) \text{ for } (R)-3 \}$ allowed us to confirm the absolute configuration of our

synthetic isohaliclorensin (3) as R, which further confirmed the 2R, 2'R stereochemistry assigned for 2-phenyl-2-(2-vinyl-piperidin-1-yl)-ethanol (11a) (vide supra).

Next, we turned our attention to the asymmetric synthesis of haliclorensin (1). Chemoselective reduction of the nitrile group of **4** (H₂, PtO₂, Norit, H₂SO₄, 96 h)¹⁸ under acidic conditions provided the desired amido-amine **16** in 87% yield (Scheme 7). Treatment of **16** with 0.95 molar equiv of

LHMDS in toluene at reflux led to the desired ring-expanded¹⁹ product 17^{20} {mp 129–130 °C, $[\alpha]^{20}_D$ –5.6 (c 0.8, CHCl₃)} as a white solid in 43% yield (77% based on recovered starting material).

The final transformation of **17** to haliclorensin (**1**) turned out to be problematic. Attempts to reduce **17** with lithium aluminum hydride led to complex mixtures of products, with the desired product **1** only being isolated in low yield. Finally, it was found that the reduction of amide **17** with borane generated in situ from a NaBH₄–I₂ system²¹ (THF, reflux, 16 h) provided the desired (*R*)-haliclorensin (*R*-**1**) { $[\alpha]^{20}_D$ 19.4 (*c* 0.8, MeOH); lit. $[\alpha]_D$ –2.2 (*c* 1.3, MeOH) for natural **1**; lit. $[\alpha]_D$ –18.5 (*c* 0.6, MeOH) for (*S*)-**1**; lit. $[\alpha]^{20}_D$ 20 (*c* 2.0, MeOH) for (*R*)-**1**} in 75% yield.

Since the natural haliclorensin (1) was shown to consist of (R)- and (S)-enantiomers in a 1:3 ratio, with the (S)-enantiomer being predominant,^{3b} we decided to pursue the synthesis of the (S)-enantiomers of haliclorensin (1) and isohaliclorensin 3. Toward this end, Katritzky's method¹² was adopted for the synthesis of 11b. Thus, treatment of 9 with 1.0 molar equiv of vinylmagnesium bromide at -78 °C, followed by reduction of crude 18 with NaBH₄ provided 11b as the major diastereomer (dr = 89:11, overall yield, 54%)

Org. Lett., Vol. 6, No. 7, 2004

^{(16) (}a) Munchhof, M. J.; Meyers, A. I. *J. Org. Chem.* **1995**, *60*, 7084. (b) Andres, J. M.; Herraiz-Sierra, I.; Pedrosa, R.; Perez-Encabo, A. *Eur. J. Org. Chem.* **2000**, 1719. (c) For a related method, see: Guerrier, L.; Royer, J.; Grierson, D. S.; Husson, H.-P. *J. Am. Chem. Soc.* **1983**, *105*, 7754.

⁽¹⁷⁾ Agami, C.; Couty, F.; Evano, G. Tetrahedron Lett. 1999, 40, 3709.

⁽¹⁸⁾ Kramer, U.; Guggisberg, A.; Hesse, M.; Schmid, H. Helv Chim. Acta 1978, 61, 1342.

⁽¹⁹⁾ For some other transamidation reactions, see: (a) Wasserman, H. H.; Berger, G. D.; Cho, K. R. *Tetrahedron Lett.* **1982**, *23*, 465. (b) Crombie, L.; Jones, R. C. F.; Osborne, S.; Mat-Zin, A. R. *J. Chem. Soc., Chem. Commun.* **1983**, 959. (c) Bienz, S.; Guggisberg, A.; Walchli, R.; Hesse, M. *Helv. Chim. Acta* **1979**, *62*, 1932. (d) Crombie, L.; Jones, R. C. F.; Haigh, D. *Tetrahedron Lett.* **1986**, *27*, 5147. (e) Crombie, L.; Jones, R. C. F.; Haigh, D. *Tetrahedron Lett.* **1986**, *27*, 5151. (f) Wasserman, H. H.; Robinson, R. P.; Matsuyama, H. *Tetrahedron Lett.* **1980**, *21*, 3493. (g) Manhas, M. S.; Amin, S. G.; Bose, A. K. *Heterocycles* **1976**, *5*, 669.

⁽²⁰⁾ Attempts to determine the enantiomeric excess of 17 by HPLC with several types of chiral columns were unsuccessful.

⁽²¹⁾ Bhanu Prasad, A. S.; Bhaskar Kanth, J. V.; Periasamy, M. Tetrahedron 1992, 48, 4623.

(Scheme 8). Compound **11b** was then converted to (*S*)-**3** and (*S*)-**1** using the procedures described for (*R*)-**3** and (*R*)-**1**, respectively (vide supra). In this way, (*S*)-isohaliclorensin (*S*-**3**) { $[\alpha]^{20}_D$ -69 (*c* 0.5, MeOH); lit.^{3a} $[\alpha]_D$ -70 (*c* 0.9, MeOH) for (*S*)-**3**} and (*S*)-haliclorensin (*S*-**1**) { $[\alpha]^{20}_D$ -18.2 (*c* 0.4, MeOH); lit.^{3b} $[\alpha]_D$ -18.5 (*c* 0.6, MeOH) for (*S*)-**1**}

were obtained in overall yields comparable to those for (R)-3 and (R)-1.

To summarize, starting from (3'R)-9, the first enantiodivergent syntheses of both enantiomers of isohaliclorensin (3) and haliclorensin (1) have been achieved. Notably, good agreement of the specific rotation values of both enantiomers of 1 and 3 with reported data implies that, under controlled conditions, racemization can be minimized during the ring expansion reactions.

Acknowledgment. The authors are grateful to the National Science Fund for Distinguished Young Investigators, the NNSF of China (29832020; 20072031; 20272048; 203900505), the Ministry of Education (Key Project 104201), and the Specialized Research Fund for the Doctoral Program of Higher Education (20020384004) for financial support.

Supporting Information Available: Experimental procedures and spectral data for compounds 1, 3–5, 7, 8, 11, 16, and 17. This material is available free of charge via the Internet at http://pubs.acs.org.

OL049887K

1142 Org. Lett., Vol. 6, No. 7, 2004